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Text summarization is becoming an essential research area due to rapid growth of
online text data. It involves condensing long sequences of text into short, concise,
and expressive summaries. There are two main approaches: extractive and
abstractive. Extractive approach focuses on selecting portions of text without
addressing underlying meaning. While abstractive approach rephrases or
reorganizes long text to produce semantically equivalent summaries, possibly with
new words or phrases. In the case of Tigrigna, most existing studies have relied on
extractive techniques, leaving abstractive methods largely unexplored. There is no
structured dataset, no pre-trained word embedding, and no pertained
summarization model in Tigrigna. These fundamental problems have been
affecting the motive to apply abstractive approach in Tigrigna. This study
addresses this gap by developing an abstractive text summarization model for the
Tigrigna language using deep learning techniques. A dataset of 1,167 structured
input paragraphs and reference summaries was prepared for training and
evaluation. Different embedding methods, including fastText and Byte Pair
Encoding, were trained on about 320 MB of data. In this study, two models
(Sequence-to-sequence Long Short-Term Memory and Transformer) were
evaluated. The Sequence-to-sequence works sequentially, whereas the
Transformer operates in parallel. An attention mechanism was added to
Sequence-to-sequence, while Transformer uses self-attention. Among tested
model–embedding matches, Sequence-to-sequence with attention and fastText
with down-sampling showed superior performance, achieving accuracy of 0.72
and Recall-Oriented Understudy for Gisting Evaluation scores of R-1=0.20, R-
2=0.183, and R-N=0.17. This work pioneers Tigrigna abstractive summarization,
marking a foundational step for future research. Future studies could concentrate
on growing the dataset, investigating bidirectional and hybrid deep learning
architectures.
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1. Introduction 

Natural Language Processing (NLP) has been 

transforming how machines interpret and 

process written text (Regulation, 2024). Text 

summarization has emerged as an essential NLP 

task for generating concise and meaningful 

summaries with the exponential growth of 

online content. Among the many languages 

processed by NLP systems, Tigrigna, a 

morphologically rich language spoken by around 

9.9 million people in the Horn of Africa, faces 

significant challenges due to the scarcity of 

resources such as annotated datasets, 

pretrained embeddings, and summarization 

models (Birhanu, Guesh Amiha, 2017). This lack 

of tools has slowed research progress and 

limited information accessibility for Tigrigna 

speakers. 

Text summarization can be broadly 

categorized into extractive and abstractive 

approaches (Shakil et al., 2024). Extractive 

summarization selects key portions of the 

original text, while abstractive summarization 

generates new sentences that capture the 

overall meaning(Relan & Rambola, 2022). For 

Tigrigna, existing studies have focused mainly on 

extractive methods, which often fail to preserve 

coherence and semantic richness(Carenini et al., 

2006).  

This study, therefore, explores the 

application of modern abstractive text 

summarization techniques to Tigrigna. It focuses 

on methods based on the Sequence-to-

Sequence (Seq2Seq) framework using the 

encoder-decoder model (Bo et al., 2025; Wazery 

et al., 2022). In this model, the encoder 

transforms input text into hidden 

representations, while the decoder generates a 

new sequence of tokens as output. The main 

objective of this research is to apply and adapt 

NLP frameworks to develop an abstractive 

summarization system for Tigrigna. The study 

involves preparing datasets and embeddings, 

building deep learning models such as Seq2Seq 

with attention and Transformer architectures, 

and evaluating their performance. 

2. Literature Review 

Text summarization is an active study topic 

in today's world. As a result, there are numerous 

studies underway in this area. To that purpose, 

the researcher presents works from the 

beginning to the present, demonstrating how 

different researchers conducted their research 

and what they learned. Based on the output 

they generate; text summarization approaches 

are either extractive or abstractive(Carenini et 

al., 2006).  

Some studies to Tigrigna extractive 

summarization of single documents are 

researched(Birhanu, Guesh Amiha, 2017; 

Birhanu, 2017; Regassa et al., 2017). These 

researches focused on identifying key textual 

elements. For example, proposed a topic-based 

Tigrigna text summarization method that 

integrates wordnet and Probabilistic Latent 

Semantic Analysis (PLSA). This research was 

evaluated using a dataset of 200 Tigrigna news 

articles from various domains. The performance 
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was assessed with precision and recall metrics at 

a 25% extraction rate, yielding a precision/recall 

score of 0.5014.  

A review has also done on many papers 

using abstractive approach. Though there is not 

any abstractive based paper published for 

Tigrigna language, the researcher reviewed 

some related languages like Amharic, English, 

Urdu and Arabic(Khalil, 2020; Shafiq et al., 2023; 

Tamiru & Libsie, 2009; Yirdaw, 2011; Yirdaw & 

Ejigu, 2012). These papers have applied deep 

learning to train their models.  Deep learning is a 

trending field due to its essential applications in 

the research area(Abdullahi et al., 2021). There 

are various models that suits, the abstractive 

text summarization(Paritosh Marathe, 2020). 

There are even pre-trained or predefined 

models to the popular languages like English. 

However, for the Ethiopian languages, it is not 

exercised well. Particularly in Tigrigna, there is 

no pre-trained deep learning model. 

3. Research Methodology 

The setting of the methodology for the 

abstractive Tigrigna text summarization includes 

data collection and structuring, data 

preprocessing, word embedding, padding, and 

model implementation and training. 

 

 

 

 

 

 

Table 1 

Summary of Related Works in Tabular Form 

Title Language Author and 
Year 

Method  

Topic-Based 
Text 
Summary 

Tigrigna Regassa & 
Getachew, 
2017;  

Wordnet and PLSA 

Automatic 
Text 
Summarizer 

Tigrigna Birhanu, 
2017 

Term frequency 
and title words 
methods 

Text 
Summarizati
on Using 
Deep 
Learning 

Tigrigna Hiluf 
Gebrehiwo
t and 
Melese, 
2023 

Restricted 
Boltzmann 
Machines (RBM) 

Abstractive 
Text 
Summarizati
on Model 

Amharic  Khalil, 
2020 

Seq2Seq with Long 
Short-Term 
Memory (LSTM) 
and attention 

Deep 
Learning-
Based 
Abstractive 
Summarizati
on 

English Suleiman & 
Awajan, 
2020 

RNN with attention 
and LSTM 

Deep 
Learning for 
Abstractive 
Summarizati
on 

Urdu Shafiq et 
al., 2023 

Seq2Seq model 
with deep learning 
compared to SVM 
and LR 

Text 
Summarizati
on with 
Seq2Seq and 
Attention 
Mechanism 

English Sutskever 
et al., 2014 

Seq2Seq with 
attentional 
encoder-decoder 
RNN 

3.1 Dataset Structuring 

Data collection and structuring tasks were 

the most challenging steps due to the scarcity of 

prepared resources in Tigrigna language. The 

data is taken from Dimtsi Weyane television, 

Tigrai television, and Github website(Tigrinya · 

GitHub Topics · GitHub, n.d.), as raw data. These 

environments were chosen in two reasons for 

data collection. Firstly, it is easy to collect the 

desired data. The second and mandatory criteria 

was the nature of their data. This means most of 

the data are news texts. Usually, news is 

prepared by journalists, having the main news 

(title) so that the title is used as the reference 

summary. Therefore, 1,167 pairs of input texts 
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(paragraphs) and reference summaries are 

structured by using the title part as the 

reference summary to help the model learn 

summarization in Tigrigna.  

While working in abstractive summarization 

using deep-learning, it is essential to structure 

and organize the data before preprocessing 

(Abdullahi et al., 2021). In this case, the model 

needs pair of input text and reference summary, 

as input for the encoder-decoder LSTM network. 

And hence these pair of inputs are prepared in 

notepad editor by adding special delimiters 

‘===text===’ (user defined delimiter for the 

Text) to the input text and ‘===summary===’ 

(user defined delimiter for the Summary) to the 

reference summary. These delimiters are used 

to identify the pair of inputs while loading the 

dataset file, and those delimiters are custom 

markers that defined to separate and identify 

segments of data when preparing input files 

manually for preprocessing scripts. The 

following Tigrigna texts show how the given 

Tigrigna text is structured before preprocessing.  

Raw text example:  

ኣርእስተ ዜና  
ኣብ ትግራይ ምስፍሕፋሕ ኢንቨስትመንት ንሆቴላት ምችው ባይታ 
ዝፈጥር እዩ ተባሂሉ  

ዝርዝር ዜና  
ምስፍሕፋሕ ኢንቨስትመንት ሆቴላት ዕድል ስራሕ ኣብ 

ምፍጣርን፣ ዳግመ ህንፀትን መስሕብ ቱሪዝምን ትግራይ እውን 

ኣብ ምብራኽን ልዑል ኣበርክቶ ከምዘለዎም ቢሮ ባህልን 

ቱሪዝምን ትግራይ ገሊፁ። እዚ ዝተገለፀ ብልዕሊ 200ሚልዮን 

ብር ወፃኢ ኣብ ከተማ መቐለ ዝተሃነፀ ሆቴል ከይከይ (KK) 

ኣብዝተመረቐሉ እዋን እዩ።  

The following text shows input pairs of the 

above news after structuring:  

===text=== ምስፍሕፋሕ ኢንቨስትመንት ሆቴላት ዕድል 

ስራሕ ኣብ ምፍጣርን፣ ዳግመ ህንፀትን መስሕብ ቱሪዝምን 

ትግራይ እውን ኣብ ምብራኽን ልዑል ኣበርክቶ ከምዘለዎም ቢሮ 

ባህልን ቱሪዝምን ትግራይ ገሊፁ። እዚ ዝተገለፀ ብልዕሊ 

200ሚልዮን ብር ወፃኢ ኣብ ከተማ መቐለ ዝተሃነፀ ሆቴል 

ከይከይ (KK) ኣብዝተመረቐሉ እዋን እዩ።  

===summary=== ኣብ ትግራይ ምስፍሕፋሕ 

ኢንቨስትመንት ንሆቴላት ምችው ባይታ ዝፈጥር እዩ ተባሂሉ:: 

3.2.  Data Preprocessing 

Data preprocessing involves preparing raw 

text data to enhance the performance of 

summarization models. This task includes text 

cleaning, contraction mapping, character 

normalization, and tokenization. Text cleaning 

also involves removing non-Tigrigna characters, 

punctuations, special characters, stop words 

(like ስለ፣ ከም) and extra whitespaces. Contraction 

mapping and character normalization is also 

done on the Tigrigna contraction words and 

some characters that have same sound and 

purpose. In this case, a separate JSON file is 

prepared as input for the preprocessing. This file 

includes Tigrigna characters mapping (e.g., ጸ=ፀ፣ 

ሠ=ሰ) and Tigrigna words abbreviation mapping 

(e.g., ዝ/ዩ=ዝተፈላለዩ፣ ቤ/ት/ቲ=ቤት ትምህርቲ). 

Tokenizing the text into words or sentences, and 

normalizing words through lemmatization or 

stemming. This file is prepared manually from 

Tigrai tourism and culture bureau. It has 92 

abbreviations and short form mappings, and 28-

character mappings.  

Additionally, tokenization is also done to the 

cleaned data. This activity reads a sequence of 

characters as a string and tokenizes them using 

a predefined list of delimiters such as space and 
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punctuation marks and then represents each 

token in array of numbers. In this study, input 

texts are tokenized into a sentence using the 

punctuation “።‟ and each sentence are spliced 

in to entire or nested list which helps to convert 

into list of words. 

3.3. Data Splitting  

Data splitting is one of the mandatory steps 

in preparing data to train deep learning models. 

It is the process of intentional dividing the 

organized data in to different subsets to be used 

in different stages of the model’s lifecycle such 

as training, validation, and testing. 

In this work, data is split using a ratio of 80% for 

training, 10 % for validation, and 10% for testing 

subsets. This ratio of the subsets is selected by 

its convenience to the model and data size after 

conducting 3 experiments with common data 

splitting ratios in abstractive text 

summarizations. The dataset is limited and was 

partitioned with 10% reserved for testing. 

Without allocating a portion of the data for 

validation and testing, the model would be 

susceptible to overfitting, compromising its 

generalization performance. There are different 

techniques to split the data in to different 

subsets. The commonly exercised techniques 

are random and stratified. Random method is 

used for splitting as the data is uniformly 

distributed.  

3.4. Word Embedding 

Word embeddings help models understand 

the meaning of words in context(Egger, 2022). 

For Tigrigna, a language with rich morphology 

and syntactic structures, embeddings need to 

capture not only word meanings but also 

relationships between different word forms. 

Tigrigna, like many other languages, has words 

that change form based on tense, number, and 

gender. Specialized embeddings can capture 

these variations, allowing the model to 

generalize better and produce more accurate 

summaries. 

There are two types of word embedding 

techniques: traditional methods and contextual 

methods(Egger, 2022). In the traditional types of 

embedding techniques, the vector form does 

not capture the semantic relationship as words 

are embedded independently. Examples of 

traditional word embedding include Term 

Frequency-Inverse Document Frequency (TF-

IDF), count vector, GLOVE, Word2Vec etc 

(Abdullahi et al., 2021). On the other way, the 

common algorithms used for training word 

embeddings having semantic information are 

fastText, Elmo, Generative Pre-trained 

Transformer (GPT) and GPT-2, Byte Pairing 

Encoding (BPE) and Bidirectional Encoder 

Representations from Transformers (BERT). In 

this study, experiments for word embedding 

were made using fastText and BPE word 

embedding methods for their convenience to 

rich morphology languages(Egger, 2022). Due to 

the absence of publicly available pre-trained 

Tigrigna word embeddings, custom models were 

developed for this research. A custom Tigrigna 

word embeddings were prepared using those 

approaches and trained them on a large dataset 
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spanning multiple fields like agriculture, 

education, sports, and politics. As a 

consequence of the experiment, the fastText 

using down sampling method has performed 

better and used to generate custom embedding 

of the data set.  The resulting word vectors are 

maintained locally, providing an important 

linguistic resource for the research goal, 

developing an abstractive summarization model 

for Tigrigna text.  

In this technique, every single occurrence of 

a word is represented by embedding dimension. 

Embedding dimension defines the length of the 

vector representation for each word. Higher 

value reflects higher information but requires 

high memory space. The common values are 50, 

100, 200, and 300. When the data is large size, 

using large dimension (e.g.  300) is preferred. 

However, when data is small, it is recommended 

to set average dimension (e.g.  50 or 100) to 

utilize memory space(Egger, 2022). In this work, 

the embedding dimension is set to 100 as you 

can see in the output example below. 

Example: the word ‘ትምህርቲ’ is represented as 

follows. 
ትምህርቲ 0.1925859 -0.29207048 -0.08439901 0.039799646 
0.3641676 0.073608406 -0.7650273 0.04147037 0.2879626 -
0.36144435 -0.39172873 0.5143982 -0.752826 0.08606512 -
0.93490994 -0.13160115 -0.41230726 0.7842884 0.5688561 
0.10861172 -0.26581797 -0.23717366 0.25146484 -0.7285605 -
0.9428908 -0.015943918 1.1289601 -0.7270743 -0.53325266 
0.045723584 -0.4794562 0.94648546 -0.5338172 -1.165367 
0.2542716 -0.52565515 -0.3413985 -0.03239215 -0.5524072 -
0.10506536 0.062022235 0.8638829 -1.0330185 0.7314383 
0.51415807 0.33765644 -0.17070593 0.032447204 -0.2572221 -
0.0751654 -0.5847026 -0.6834384 -0.4850279 0.09068502 -
0.6141403 0.45645028 0.16440077 -0.47739515 0.35700983 -
0.47724828 -0.08733774 0.29962227 0.38471565 -0.038393848 -
0.88605523 0.17655876 0.027320378 0.756702 -0.35022673 
0.42926 -0.118354924 0.35008702 0.5892428 -0.27457365 -
0.8334408 -0.023459285 -0.1667422 0.92475754 0.04237065 
0.13801275 0.6401937 -0.22754209 0.18134119 -0.3616498 
0.69549537 0.86129206 0.039201967 -0.06344785 0.1806198 
0.5076103 0.6642553 -0.49786687 0.44641012 0.24511304 -

0.09361779 -0.9122355 -0.1879493 0.01642124 -0.852965 -
0.07018303 

3.5.  Proposed Deep Learning Models 

Deep learning can automatically learn 

complex linguistic patterns. Hence, it has 

emerged as a dominant paradigm in NLP 

(Abdullahi et al., 2021). The researcher 

developed and trained two deep learning 

models for the current study, which focus on 

abstractive text summarization in Tigrigna: 

Transformer model and Seq2Seq model with 

LSTM and attention mechanism. These models 

were chosen following an analysis of a number 

of advanced architectures and their applicability 

to low-resource, morphologically rich languages 

such as Tigrigna. Since no pre-trained 

summarization models exist for Tigrigna, all 

models were implemented and trained from 

scratch to enable fair performance comparison 

of the proposed approaches. 

3.5.1. Seq2Seq Model with LSTM and 

Attention Mechanism 

The first proposed model is a Seq2Seq 

architecture composed of two core 

components: an encoder and a decoder, both 

implemented with LSTM networks. 

Encoder: the encoder LSTM takes the input text 

sequence (Tigrigna sentences) and encodes it 

into a fixed-length context vector representing 

the semantic meaning of the entire sentence. 

Decoder: the decoder LSTM receives both the 

context vector and the attention weights to 

generate the target summary word by word. 

Attention layer: instead of relying solely on the 

final encoder state, the model integrates an 
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attention mechanism that allows the decoder to 

selectively focus on different parts of the input 

sequence during the generation process. This is 

crucial for Tigrigna, which often uses long and 

morphologically complex words. 

This architecture helps the model overcome 

the limitations of basic Seq2Seq models that 

struggle with long-range dependencies. In 

training phase, the model was optimized using 

categorical cross-entropy loss and the Adam 

optimizer, with early stopping applied to 

prevent overfitting. 

 In Figure 1, the detail architecture of the 

seq2seq LSTM model with attention mechanism 

is presented. It shows how the model processes 

the given sequence of text and generates 

abstract using the deep learning algorithms. The 

LSTM networks are selected in their advantages 

like handling long term dependencies, memory 

cell and forgetting mechanism, and generally 

suitability for sequential data, over the other 

traditional recurrent neural networks. 

Figure 1 

Text of Specified Style in Document.1 

Architecture of Seq2seq LSTM Model with 

Attention Layer 

 

3.5.2. Transformer Model 

The second proposed model is a 

Transformer-based architecture, which relies 

entirely on self-attention instead of recurrent 

layers (Bo et al., 2025). The Transformer consists 

of stacked encoder and decoder layers. Each 

encoder layer includes multi-head self-attention 

and feed-forward sublayers, while the decoder 

includes masked self-attention, encoder–

decoder attention, and feed-forward networks. 

Transformer also have self-attention 

mechanism. This mechanism allows the model 

to consider all positions of the input sequence 

simultaneously, capturing long-range 

dependencies efficiently. This parallelism also 

makes the model faster to train compared to 

LSTM-based architectures. Since Transformers 

lack recurrence, positional encoding was added 

to the input embeddings to provide information 

about word order. 

The same preprocessing pipeline was used 

during training, as the Seq2Seq model was 

applied. The Transformer demonstrated 

stronger ability to capture contextual meaning 

across longer sentences but required larger 

computational resources. 

3.6.  Experiments and Hyperparameters 

Tunning 

3.6.1. Hyperparameter Tunning 

The seq2seq LSTM model with attention 

mechanism and fastText embedding is trained 

under the following settings. Selecting the right 

hyperparameters is crucial to enhance the 

model’s performance. The basic 

hyperparameters used in the model training are 

epoch size, batch size, learning rate, dropout 

rate, early stopping, optimizer and embedding 

dimension. These parameters were essential to 
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manage the performance of the model while 

training using the data and generating relatively 

accurate summary text(Abdullahi et al., 2021). 

Hyperparameters such as epoch and batch size 

are set manually in the experiment.  Too small 

epoch and batch size is not good for the model 

learning capability, certainly cause overfitting.  

3.6.2. Analysis of Experiment-3 

This is the best experiment that shown best 

result during the model training phases. In this 

experiment epoch is 30, batch size is 32, and 

learning rate is dynamically scheduled starting 

from 0.001. It is possible to make further 

experiments above epoch 30 or below 20. 

However, when you go to high number such as 

40 or 50, you face numerous challenges such as 

memory, processor, and mainly model 

overfitting. There is also the concept of early 

stopping, that automatically terminates the 

training if there is no change on the 

performance metrics. Here, the researcher 

observed using more than 30 epochs have not 

positive effect on the model training and hence 

used maximum epoch value 30.   

Table 2 

Text of specified style in document.2 Conducted 

experiments in Seq2seq using LSTM model 

 

Note. Exp=Experiment, EP= Epoch, BS= Batch-

size, P=Patience, and Emb= Embedding 

 

 

Figure 2  

Text of Specified Style in Document.2 Model 

Training in Experiment-3 

 
In these experiments, it is shown that the 

hyperparameter tuning and the performance 

results found in each experiment of 

hyperparameters. And hence, as shown in 

Figure 2 experiment 3 has performed better and 

taken as the best settings to train the model. 

4. Results and Discussion 

In this study, the performance results of the 

different models are reported using accuracy 

and ROUGE scores across different types of 

embeddings. During training, accuracy result is 

generated in every epoch. But the result to be 

compared across the different models is of the 

testing data that has reserved as 10 % of the 

dataset. The Table 3 and 4 below describe the 

accuracy and ROUGE scores achieved by each 

model based on the specific embedding 

methods used. Notably, some models show 

signs of overfitting which can be attributed to 

the limited size and domain imbalance of the 

Tigrigna dataset, as well as the relatively high 

complexity of the LSTM architecture compared 

Exp  EP  BS L-rate P Factor  loss Test  Emb 

1 20 64 0.01 5 0.2 2.196 0.718 100 

2 25 32 0.001 5 0.2 2.206 0.714 100 
3 30 32 0.001 5 0.2 2.174 0.721 100 
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to the amount of available training data, as 

evidenced by differences in performance 

measures between the training and validation 

periods. To illustrate these insights, the Table 3 

compiles accuracy results, while Table 4 

provides ROUGE scores for each model and 

embedding type. This comparison investigation 

sheds light on how embedding choices affect 

model performance during Tigrigna 

summarization. The combination of different 

model architectures and embedding types 

yielded varying results. Table 3 below shows the 

accuracy results of experimented models with 

varying embedding types.  

Table 3  

Text of Specified Style in Document.3 Accuracy 

Results 

Accuracy 
results 

Using fast Text embedding  Using BPE 
embedding 

Simple 
fast Text 

Stop 
words 
removal 

Down-
sampling 

Simple 
Seq2seq LSTM 

0.713 0.652 0.715 0.6895 

Seq2seq with 
attention 
mechanism 

0.709 0.700 0.721 0.695 

Transformer  0.009 0.22 0.32 0.45 

In the area of NLP tasks like text 

summarization, only accuracy is not sufficient to 

measure performance. Accuracy cannot capture 

relevance, coherence, and fluency of generated 

summaries that summarization quality often 

depends on. Accuracy generally measures exact 

matches, which may not fully represent the 

quality of generated text since a summary can 

be accurate but still miss key details or be poorly 

structured. 

For summarization tasks, using metrics like 

ROUGE is crucial (Shakil et al., 2024). ROUGE 

measures n-gram overlap between generated 

and reference summaries. In abstractive 

summarization ROUGE value is usual to be very 

small size. This is because the new generated 

summary is expected to be formulated with 

possibly new words. So, generating new words 

will decrease the ratio of overlapping n-grams 

and subsequences. ROUGE includes variations 

like ROUGE-N (for n-grams), ROUGE-L (for 

longest common subsequence), and ROUGE-W 

(weighted overlap). The model has been 

evaluated by using the three types of ROUGE 

values, namely ROUGE-N (ROUGE-1 and ROUGE-

2) and ROUGE-L. These metrics provide a more 

nuanced view of how well generated summaries 

align with human-generated references, beyond 

mere correctness.  

Table 4 shows the different ROUGE results 

for all proposed models with corresponding to 

the different embedding types. In this table, the 

bold values are higher values by average.  

Table 4  

Text of Specified Style in Document.4 ROUGE 

Results 
ROUGE 

results 

Using fast Text embeddings BPE 

embedding Simple fast 

Text 

Stop words 

removal 

Down-

sampling 

Simple 

Seq2seq 

LSTM 

R1=0.20 

R2=0.23 

RL=0.108 

R1=0.13 

R2=0.115 

RL=0.09 

R1=0.197 

R2=0.194 

RL=0.17 

R1=0.12 

R2=0.105 

RL=0.109 

Seq2seq 

with 

attention 

mechanism 

R1=0.2 

R2=0.171 

RL=0.168 

R1=0.16 

R2=0.135 

RL=0.099 

R1=0.205 

R2=0.183 

RL=0.17 

R1=0.16 

R2=0.16 

RL=0.154 

Transformer R1=0.19 

R2=0.15 

RL=0.14 

R1=0.18 

R2=0.18 

RL=0.175 

R1=0.183 

R2=0.174 

RL=0.08 

R1=0.20 

R2=0.196 

RL=0.18 

 Note.  R1 = ROUGE-1, R2 = ROUGE-2, RL = 

ROUGE-L 

Generally, these experiments revealed that 

both the choice of model architecture and the 

embedding type, along with specific 
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preprocessing steps, had a substantial impact on 

performance. The Seq2Seq with Attention 

model paired with fast-Text embeddings with 

down-sampling mechanism yielded the best 

overall performance. The Transformer model 

with BPE embeddings also showed encouraging 

results, particularly for handling complex or 

lengthy input sequences. These findings provide 

insight into the factors that influence the 

effectiveness of models for Tigrigna text 

summarization and emphasize the importance 

of appropriate preprocessing strategies for 

achieving optimal results. 

4.1. Detailed Analysis of the Best Model: 

Seq2Seq LSTM with Attention Mechanism  

In this work, the seq2seq LSTM model using 

attention mechanism is found as the best model 

for the abstractive summarization in Tigrigna 

language. Hence the research question of this 

thesis got positive answer as some deep-

learning models are able to summarize given 

Tigrigna texts to a minimum requirement. The 

selected model has the ability to handle 

Tigrigna’s complex linguistic structures and 

limited data organized for abstractive 

summarization. The Seq2Seq framework allows 

the model to generate new summaries that 

conserves the meaning of the input text while 

transforming it into new abstract with the same 

meaning. The attention mechanism further 

enhances this by enabling the model to 

selectively focus on the most relevant parts of 

lengthy input sequences, improving the 

coherence and relevance of generated 

summaries. 

Moreover, the use of fast-Text embedding 

using down-sampling strengthens the Seq2Seq 

model by providing sub-word information. 

Having sub-word information is crucial in 

morphologically rich languages like Tigrigna. It 

also helps the model recognize word 

morphemes and relationships, even the data is 

limited. This combined organization of the 

Seq2Seq LSTM with attention and with fast-Text 

embeddings creates a model that can handle 

Tigrigna’s lengthy input sequences, 

morphological complex pattern, and data 

scarcity, ultimately achieving better 

summarization result and predicting junior 

abstractive summaries. Though there are 

numerous challenges, this combination provides 

a promising foundation for future trends in 

Tigrigna abstractive summarization. 

As already discussed in Table 4 the 

performance of each model has been compared 

in their accuracy, loss and ROUGE results. 

Though it is not excellent result, seq2seq LSTM 

model with attention and fastText embedding is 

better over the others.  

The overall result of the model’s training and 

validation can also be described using line charts 

generated using deep-learning packages after 

the model execution completed. So, shows the 

line charts for both accuracy and loss with 

training and validation progresses in 30 epochs 

respectively. 
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Figure 3 

Text of Specified Style in Document.3-Line Chart 

 
Figure 4 

Line Chart of Loss for Seq2seq LSTM Model with 

Attention 

 

Although an interactive user interface was 

not developed to present the generated 

summaries alongside the input texts and 

reference (human) summaries, sample outputs 

of the model were documented. While the 

model shows good results, it also has notable 

limitations. One common issue is that the model 

occasionally generates repetitive words, 

indicating difficulties in maintaining coherence 

and diversity within the output. It also produces 

overly short summaries, sometimes consisting of 

just a single word or, in rare cases, generating 

no output at all (null summaries). These issues 

show us the model is still struggling with the 

task of producing summaries that semantically 

close the human summaries, highlighting areas 

where further refinement and tuning may be 

good to make it better. So, the following sample 

outputs in  

Figure 5  

Taken Directly from Output Generated by 

Seq2seq LSTM Model 

 

4.2. Detailed Analysis of Transformer 

All the steps done to analyze the seq2seq 

LSTM model are also applied to transformer. 

However, this model has shown less 

performance than seq2seq LSTM model over all 

the hyperparameters. Figure 5 shows sample 

output of transformer model by taking the raw 

text and actual summary.  

Figure 6 

 A Sample Output from Transformer Model 

 
In this output, actual summary is reference 

or human summary prepared manually from the 

long input text. Whereas predicted summary is 

generated by the model. Besides, the predicted 

summaries are showing repetition of words or 

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/


Gebretekle Y et al.               RJSD1(1):2025 

https://doi.org/10.82489/rjsd.2025.1.01.29                   https://rayajsd.org/index.php/rjsd/ 

phrases. This shows the model is struggling to 

adapt the language structure and generate 

summaries. Hence, Seq2seq model using LSTM 

and attention mechanism is preferred over the 

transformer model. 

5. Conclusion 

In today’s information-rich world, 

summarizing large volumes of text is crucial for 

enabling quick and effective access to relevant 

content. For many languages, including Tigrigna, 

there is no easy or structured way to condense 

vast amounts of online text into reader-friendly 

summaries. In response to this need, an 

abstractive summarization approach is proposed 

to the Tigrigna language using deep learning, a 

task made challenging by the language's 

complex morphology, limited digital resources, 

and the absence of pretrained models or 

datasets. To tackle this, two core deep learning 

models are trained: a Seq2Seq model with 

attention and a Transformer-based model, both 

of which are well-suited for abstractive 

summarization. The Seq2Seq model enabled 

effective sequence learning, capturing word 

dependencies in a way that aligns with Tigrigna’s 

unique syntactic structures, while the 

Transformer model leveraged self-attention 

mechanisms for improved contextual 

understanding over longer sequences. However, 

these models required a high degree of 

adaptation to accommodate Tigrigna’s rich 

morphology and unique language constructs, 

which differ significantly from more commonly 

studied languages. 

When compared with previous studies, 

which were primarily extractive in nature and 

relied on statistical or rule-based approaches, 

the proposed models demonstrate the potential 

of semantic-level summarization in capturing 

contextual meaning and generating fluent text. 

Although the current results, measured through 

accuracy, loss, and ROUGE scores, remain 

modest due to limited data, they represent a 

significant advancement beyond earlier 

extractive approaches that could not generalize 

semantic relationships within Tigrigna 

sentences. The Seq2Seq model achieved better 

performance (accuracy ≈ 0.72, loss ≈ 2.17) than 

the Transformer model, highlighting its 

suitability for smaller, structured datasets. 

This research therefore marks a foundational 

contribution to the field of Tigrigna text 

summarization. While the output quality 

remains at an initial stage, with room for 

improvement in fluency and coherence, this 

work serves as a pioneering benchmark and a 

practical starting point for future research. This 

study opens the door to further refinements in 

summarization quality, by establishing a 

structured approach to abstractive 

summarization for Tigrigna, potentially 

benefiting Tigrigna-speaking communities and 

advancing the broader field of low-resource 

language processing. The following are some 

future directions to drive this field forward. 

1.   Development of a standardized Tigrigna 

corpus: one of the key challenges faced 

was the lack of a standardized, 
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annotated corpus for Tigrigna, which 

limited the model’s training potential. 

Future research should focus on 

creating a well-structured Tigrigna 

corpus to support researchers in 

evaluating and benchmarking their 

systems more effectively. 

2.   Exploration of advanced deep learning 

models: this research employed an 

encoder-decoder LSTM-based Seq2Seq 

model for summarization. To push 

beyond this framework, future studies 

could explore more complex deep 

learning architectures, such as 

Transformer variants, that may capture 

longer-range dependencies and 

nuanced contextual details more 

effectively in Tigrigna. 

3.   Expanded word embeddings with root 

words: the word embeddings used in 

this study cover a limited set of Tigrigna 

word roots. Building on this work, future 

research should focus on expanding 

embeddings to encompass a more 

comprehensive array of Tigrigna root 

words, which would enhance the 

model's language representation and 

support better generalization. 
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