
 Department of Computer science Raya University , Maichew, Ethiopia1

Department of Electrical Engineering Raya University , Maichew, Ethiopia2

RAYA JOURNAL OF SCIENCE AND DEVELOPMENT

Abstractive Tigrigna Text Summarization using Deep Learning Approach

Abstract

RJSD 1(1):2025

Text summarization is becoming an essential research area due to rapid growth of
online text data. It involves condensing long sequences of text into short, concise,
and expressive summaries. There are two main approaches: extractive and
abstractive. Extractive approach focuses on selecting portions of text without
addressing underlying meaning. While abstractive approach rephrases or
reorganizes long text to produce semantically equivalent summaries, possibly with
new words or phrases. In the case of Tigrigna, most existing studies have relied on
extractive techniques, leaving abstractive methods largely unexplored. There is no
structured dataset, no pre-trained word embedding, and no pertained
summarization model in Tigrigna. These fundamental problems have been
affecting the motive to apply abstractive approach in Tigrigna. This study
addresses this gap by developing an abstractive text summarization model for the
Tigrigna language using deep learning techniques. A dataset of 1,167 structured
input paragraphs and reference summaries was prepared for training and
evaluation. Different embedding methods, including fastText and Byte Pair
Encoding, were trained on about 320 MB of data. In this study, two models
(Sequence-to-sequence Long Short-Term Memory and Transformer) were
evaluated. The Sequence-to-sequence works sequentially, whereas the
Transformer operates in parallel. An attention mechanism was added to
Sequence-to-sequence, while Transformer uses self-attention. Among tested
model–embedding matches, Sequence-to-sequence with attention and fastText
with down-sampling showed superior performance, achieving accuracy of 0.72
and Recall-Oriented Understudy for Gisting Evaluation scores of R-1=0.20, R-
2=0.183, and R-N=0.17. This work pioneers Tigrigna abstractive summarization,
marking a foundational step for future research. Future studies could concentrate
on growing the dataset, investigating bidirectional and hybrid deep learning
architectures.

Yemane Gebrekidan , Gebrekiros Gebreyesus , Tewelde Hailay , Yemane Hailay Nega1 2 1 1

Keywords: abstractive, attention mechanism , fast text embedding, LSTM,
Seq2Seq

https://rayajsd.org/index.php/rjsd

Article History:
Received: 2025-08-05
Accepted: 2025-09-24
Published: 2025-11-06
DOI: https://doi.org/10.82489/rjsd.2025.1.01.29

Suggested citation:
Yemane, G., Gebrekiros, G., Tewelde, H., & Yemane, H.
(2025): Abstractive Tigrigna Text Summarization using
Deep Learning Approach. RJSD 1(1): 1 -14; DOI:
10.82489/rjsd.2025.1.01.29.

*Correspondence :
Yemane Gebrekidan Gebretekle
yemanegkidan8@gmail.com

Copyright:
©2025 Raya University, This is an open access article
distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided
the original author and source are credited.

https://rayajsd.org/index.php/rjsd
https://doi.org/10.82489/rjsd-2025
mailto:getush12@gmail.com

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

1. Introduction

Natural Language Processing (NLP) has been

transforming how machines interpret and

process written text (Regulation, 2024). Text

summarization has emerged as an essential NLP

task for generating concise and meaningful

summaries with the exponential growth of

online content. Among the many languages

processed by NLP systems, Tigrigna, a

morphologically rich language spoken by around

9.9 million people in the Horn of Africa, faces

significant challenges due to the scarcity of

resources such as annotated datasets,

pretrained embeddings, and summarization

models (Birhanu, Guesh Amiha, 2017). This lack

of tools has slowed research progress and

limited information accessibility for Tigrigna

speakers.

Text summarization can be broadly

categorized into extractive and abstractive

approaches (Shakil et al., 2024). Extractive

summarization selects key portions of the

original text, while abstractive summarization

generates new sentences that capture the

overall meaning(Relan & Rambola, 2022). For

Tigrigna, existing studies have focused mainly on

extractive methods, which often fail to preserve

coherence and semantic richness(Carenini et al.,

2006).

This study, therefore, explores the

application of modern abstractive text

summarization techniques to Tigrigna. It focuses

on methods based on the Sequence-to-

Sequence (Seq2Seq) framework using the

encoder-decoder model (Bo et al., 2025; Wazery

et al., 2022). In this model, the encoder

transforms input text into hidden

representations, while the decoder generates a

new sequence of tokens as output. The main

objective of this research is to apply and adapt

NLP frameworks to develop an abstractive

summarization system for Tigrigna. The study

involves preparing datasets and embeddings,

building deep learning models such as Seq2Seq

with attention and Transformer architectures,

and evaluating their performance.

2. Literature Review

Text summarization is an active study topic

in today's world. As a result, there are numerous

studies underway in this area. To that purpose,

the researcher presents works from the

beginning to the present, demonstrating how

different researchers conducted their research

and what they learned. Based on the output

they generate; text summarization approaches

are either extractive or abstractive(Carenini et

al., 2006).

Some studies to Tigrigna extractive

summarization of single documents are

researched(Birhanu, Guesh Amiha, 2017;

Birhanu, 2017; Regassa et al., 2017). These

researches focused on identifying key textual

elements. For example, proposed a topic-based

Tigrigna text summarization method that

integrates wordnet and Probabilistic Latent

Semantic Analysis (PLSA). This research was

evaluated using a dataset of 200 Tigrigna news

articles from various domains. The performance

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

was assessed with precision and recall metrics at

a 25% extraction rate, yielding a precision/recall

score of 0.5014.

A review has also done on many papers

using abstractive approach. Though there is not

any abstractive based paper published for

Tigrigna language, the researcher reviewed

some related languages like Amharic, English,

Urdu and Arabic(Khalil, 2020; Shafiq et al., 2023;

Tamiru & Libsie, 2009; Yirdaw, 2011; Yirdaw &

Ejigu, 2012). These papers have applied deep

learning to train their models. Deep learning is a

trending field due to its essential applications in

the research area(Abdullahi et al., 2021). There

are various models that suits, the abstractive

text summarization(Paritosh Marathe, 2020).

There are even pre-trained or predefined

models to the popular languages like English.

However, for the Ethiopian languages, it is not

exercised well. Particularly in Tigrigna, there is

no pre-trained deep learning model.

3. Research Methodology

The setting of the methodology for the

abstractive Tigrigna text summarization includes

data collection and structuring, data

preprocessing, word embedding, padding, and

model implementation and training.

Table 1

Summary of Related Works in Tabular Form

Title Language Author and
Year

Method

Topic-Based
Text
Summary

Tigrigna Regassa &
Getachew,
2017;

Wordnet and PLSA

Automatic
Text
Summarizer

Tigrigna Birhanu,
2017

Term frequency
and title words
methods

Text
Summarizati
on Using
Deep
Learning

Tigrigna Hiluf
Gebrehiwo
t and
Melese,
2023

Restricted
Boltzmann
Machines (RBM)

Abstractive
Text
Summarizati
on Model

Amharic Khalil,
2020

Seq2Seq with Long
Short-Term
Memory (LSTM)
and attention

Deep
Learning-
Based
Abstractive
Summarizati
on

English Suleiman &
Awajan,
2020

RNN with attention
and LSTM

Deep
Learning for
Abstractive
Summarizati
on

Urdu Shafiq et
al., 2023

Seq2Seq model
with deep learning
compared to SVM
and LR

Text
Summarizati
on with
Seq2Seq and
Attention
Mechanism

English Sutskever
et al., 2014

Seq2Seq with
attentional
encoder-decoder
RNN

3.1 Dataset Structuring

Data collection and structuring tasks were

the most challenging steps due to the scarcity of

prepared resources in Tigrigna language. The

data is taken from Dimtsi Weyane television,

Tigrai television, and Github website(Tigrinya ·

GitHub Topics · GitHub, n.d.), as raw data. These

environments were chosen in two reasons for

data collection. Firstly, it is easy to collect the

desired data. The second and mandatory criteria

was the nature of their data. This means most of

the data are news texts. Usually, news is

prepared by journalists, having the main news

(title) so that the title is used as the reference

summary. Therefore, 1,167 pairs of input texts

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

(paragraphs) and reference summaries are

structured by using the title part as the

reference summary to help the model learn

summarization in Tigrigna.

While working in abstractive summarization

using deep-learning, it is essential to structure

and organize the data before preprocessing

(Abdullahi et al., 2021). In this case, the model

needs pair of input text and reference summary,

as input for the encoder-decoder LSTM network.

And hence these pair of inputs are prepared in

notepad editor by adding special delimiters

‘===text===’ (user defined delimiter for the

Text) to the input text and ‘===summary===’

(user defined delimiter for the Summary) to the

reference summary. These delimiters are used

to identify the pair of inputs while loading the

dataset file, and those delimiters are custom

markers that defined to separate and identify

segments of data when preparing input files

manually for preprocessing scripts. The

following Tigrigna texts show how the given

Tigrigna text is structured before preprocessing.

Raw text example:

ኣርእስተ ዜና
ኣብ ትግራይ ምስፍሕፋሕ ኢንቨስትመንት ንሆቴላት ምችው ባይታ
ዝፈጥር እዩ ተባሂሉ

ዝርዝር ዜና
ምስፍሕፋሕ ኢንቨስትመንት ሆቴላት ዕድል ስራሕ ኣብ

ምፍጣርን፣ ዳግመ ህንፀትን መስሕብ ቱሪዝምን ትግራይ እውን

ኣብ ምብራኽን ልዑል ኣበርክቶ ከምዘለዎም ቢሮ ባህልን

ቱሪዝምን ትግራይ ገሊፁ። እዚ ዝተገለፀ ብልዕሊ 200ሚልዮን

ብር ወፃኢ ኣብ ከተማ መቐለ ዝተሃነፀ ሆቴል ከይከይ (KK)

ኣብዝተመረቐሉ እዋን እዩ።

The following text shows input pairs of the

above news after structuring:

===text=== ምስፍሕፋሕ ኢንቨስትመንት ሆቴላት ዕድል

ስራሕ ኣብ ምፍጣርን፣ ዳግመ ህንፀትን መስሕብ ቱሪዝምን

ትግራይ እውን ኣብ ምብራኽን ልዑል ኣበርክቶ ከምዘለዎም ቢሮ

ባህልን ቱሪዝምን ትግራይ ገሊፁ። እዚ ዝተገለፀ ብልዕሊ

200ሚልዮን ብር ወፃኢ ኣብ ከተማ መቐለ ዝተሃነፀ ሆቴል

ከይከይ (KK) ኣብዝተመረቐሉ እዋን እዩ።

===summary=== ኣብ ትግራይ ምስፍሕፋሕ

ኢንቨስትመንት ንሆቴላት ምችው ባይታ ዝፈጥር እዩ ተባሂሉ::

3.2. Data Preprocessing

Data preprocessing involves preparing raw

text data to enhance the performance of

summarization models. This task includes text

cleaning, contraction mapping, character

normalization, and tokenization. Text cleaning

also involves removing non-Tigrigna characters,

punctuations, special characters, stop words

(like ስለ፣ ከም) and extra whitespaces. Contraction

mapping and character normalization is also

done on the Tigrigna contraction words and

some characters that have same sound and

purpose. In this case, a separate JSON file is

prepared as input for the preprocessing. This file

includes Tigrigna characters mapping (e.g., ጸ=ፀ፣

ሠ=ሰ) and Tigrigna words abbreviation mapping

(e.g., ዝ/ዩ=ዝተፈላለዩ፣ ቤ/ት/ቲ=ቤት ትምህርቲ).

Tokenizing the text into words or sentences, and

normalizing words through lemmatization or

stemming. This file is prepared manually from

Tigrai tourism and culture bureau. It has 92

abbreviations and short form mappings, and 28-

character mappings.

Additionally, tokenization is also done to the

cleaned data. This activity reads a sequence of

characters as a string and tokenizes them using

a predefined list of delimiters such as space and

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

punctuation marks and then represents each

token in array of numbers. In this study, input

texts are tokenized into a sentence using the

punctuation “።‟ and each sentence are spliced

in to entire or nested list which helps to convert

into list of words.

3.3. Data Splitting

Data splitting is one of the mandatory steps

in preparing data to train deep learning models.

It is the process of intentional dividing the

organized data in to different subsets to be used

in different stages of the model’s lifecycle such

as training, validation, and testing.

In this work, data is split using a ratio of 80% for

training, 10 % for validation, and 10% for testing

subsets. This ratio of the subsets is selected by

its convenience to the model and data size after

conducting 3 experiments with common data

splitting ratios in abstractive text

summarizations. The dataset is limited and was

partitioned with 10% reserved for testing.

Without allocating a portion of the data for

validation and testing, the model would be

susceptible to overfitting, compromising its

generalization performance. There are different

techniques to split the data in to different

subsets. The commonly exercised techniques

are random and stratified. Random method is

used for splitting as the data is uniformly

distributed.

3.4. Word Embedding

Word embeddings help models understand

the meaning of words in context(Egger, 2022).

For Tigrigna, a language with rich morphology

and syntactic structures, embeddings need to

capture not only word meanings but also

relationships between different word forms.

Tigrigna, like many other languages, has words

that change form based on tense, number, and

gender. Specialized embeddings can capture

these variations, allowing the model to

generalize better and produce more accurate

summaries.

There are two types of word embedding

techniques: traditional methods and contextual

methods(Egger, 2022). In the traditional types of

embedding techniques, the vector form does

not capture the semantic relationship as words

are embedded independently. Examples of

traditional word embedding include Term

Frequency-Inverse Document Frequency (TF-

IDF), count vector, GLOVE, Word2Vec etc

(Abdullahi et al., 2021). On the other way, the

common algorithms used for training word

embeddings having semantic information are

fastText, Elmo, Generative Pre-trained

Transformer (GPT) and GPT-2, Byte Pairing

Encoding (BPE) and Bidirectional Encoder

Representations from Transformers (BERT). In

this study, experiments for word embedding

were made using fastText and BPE word

embedding methods for their convenience to

rich morphology languages(Egger, 2022). Due to

the absence of publicly available pre-trained

Tigrigna word embeddings, custom models were

developed for this research. A custom Tigrigna

word embeddings were prepared using those

approaches and trained them on a large dataset

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

spanning multiple fields like agriculture,

education, sports, and politics. As a

consequence of the experiment, the fastText

using down sampling method has performed

better and used to generate custom embedding

of the data set. The resulting word vectors are

maintained locally, providing an important

linguistic resource for the research goal,

developing an abstractive summarization model

for Tigrigna text.

In this technique, every single occurrence of

a word is represented by embedding dimension.

Embedding dimension defines the length of the

vector representation for each word. Higher

value reflects higher information but requires

high memory space. The common values are 50,

100, 200, and 300. When the data is large size,

using large dimension (e.g. 300) is preferred.

However, when data is small, it is recommended

to set average dimension (e.g. 50 or 100) to

utilize memory space(Egger, 2022). In this work,

the embedding dimension is set to 100 as you

can see in the output example below.

Example: the word ‘ትምህርቲ’ is represented as

follows.
ትምህርቲ 0.1925859 -0.29207048 -0.08439901 0.039799646
0.3641676 0.073608406 -0.7650273 0.04147037 0.2879626 -
0.36144435 -0.39172873 0.5143982 -0.752826 0.08606512 -
0.93490994 -0.13160115 -0.41230726 0.7842884 0.5688561
0.10861172 -0.26581797 -0.23717366 0.25146484 -0.7285605 -
0.9428908 -0.015943918 1.1289601 -0.7270743 -0.53325266
0.045723584 -0.4794562 0.94648546 -0.5338172 -1.165367
0.2542716 -0.52565515 -0.3413985 -0.03239215 -0.5524072 -
0.10506536 0.062022235 0.8638829 -1.0330185 0.7314383
0.51415807 0.33765644 -0.17070593 0.032447204 -0.2572221 -
0.0751654 -0.5847026 -0.6834384 -0.4850279 0.09068502 -
0.6141403 0.45645028 0.16440077 -0.47739515 0.35700983 -
0.47724828 -0.08733774 0.29962227 0.38471565 -0.038393848 -
0.88605523 0.17655876 0.027320378 0.756702 -0.35022673
0.42926 -0.118354924 0.35008702 0.5892428 -0.27457365 -
0.8334408 -0.023459285 -0.1667422 0.92475754 0.04237065
0.13801275 0.6401937 -0.22754209 0.18134119 -0.3616498
0.69549537 0.86129206 0.039201967 -0.06344785 0.1806198
0.5076103 0.6642553 -0.49786687 0.44641012 0.24511304 -

0.09361779 -0.9122355 -0.1879493 0.01642124 -0.852965 -
0.07018303

3.5. Proposed Deep Learning Models

Deep learning can automatically learn

complex linguistic patterns. Hence, it has

emerged as a dominant paradigm in NLP

(Abdullahi et al., 2021). The researcher

developed and trained two deep learning

models for the current study, which focus on

abstractive text summarization in Tigrigna:

Transformer model and Seq2Seq model with

LSTM and attention mechanism. These models

were chosen following an analysis of a number

of advanced architectures and their applicability

to low-resource, morphologically rich languages

such as Tigrigna. Since no pre-trained

summarization models exist for Tigrigna, all

models were implemented and trained from

scratch to enable fair performance comparison

of the proposed approaches.

3.5.1. Seq2Seq Model with LSTM and

Attention Mechanism

The first proposed model is a Seq2Seq

architecture composed of two core

components: an encoder and a decoder, both

implemented with LSTM networks.

Encoder: the encoder LSTM takes the input text

sequence (Tigrigna sentences) and encodes it

into a fixed-length context vector representing

the semantic meaning of the entire sentence.

Decoder: the decoder LSTM receives both the

context vector and the attention weights to

generate the target summary word by word.

Attention layer: instead of relying solely on the

final encoder state, the model integrates an

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

attention mechanism that allows the decoder to

selectively focus on different parts of the input

sequence during the generation process. This is

crucial for Tigrigna, which often uses long and

morphologically complex words.

This architecture helps the model overcome

the limitations of basic Seq2Seq models that

struggle with long-range dependencies. In

training phase, the model was optimized using

categorical cross-entropy loss and the Adam

optimizer, with early stopping applied to

prevent overfitting.

 In Figure 1, the detail architecture of the

seq2seq LSTM model with attention mechanism

is presented. It shows how the model processes

the given sequence of text and generates

abstract using the deep learning algorithms. The

LSTM networks are selected in their advantages

like handling long term dependencies, memory

cell and forgetting mechanism, and generally

suitability for sequential data, over the other

traditional recurrent neural networks.

Figure 1

Text of Specified Style in Document.1

Architecture of Seq2seq LSTM Model with

Attention Layer

3.5.2. Transformer Model

The second proposed model is a

Transformer-based architecture, which relies

entirely on self-attention instead of recurrent

layers (Bo et al., 2025). The Transformer consists

of stacked encoder and decoder layers. Each

encoder layer includes multi-head self-attention

and feed-forward sublayers, while the decoder

includes masked self-attention, encoder–

decoder attention, and feed-forward networks.

Transformer also have self-attention

mechanism. This mechanism allows the model

to consider all positions of the input sequence

simultaneously, capturing long-range

dependencies efficiently. This parallelism also

makes the model faster to train compared to

LSTM-based architectures. Since Transformers

lack recurrence, positional encoding was added

to the input embeddings to provide information

about word order.

The same preprocessing pipeline was used

during training, as the Seq2Seq model was

applied. The Transformer demonstrated

stronger ability to capture contextual meaning

across longer sentences but required larger

computational resources.

3.6. Experiments and Hyperparameters

Tunning

3.6.1. Hyperparameter Tunning

The seq2seq LSTM model with attention

mechanism and fastText embedding is trained

under the following settings. Selecting the right

hyperparameters is crucial to enhance the

model’s performance. The basic

hyperparameters used in the model training are

epoch size, batch size, learning rate, dropout

rate, early stopping, optimizer and embedding

dimension. These parameters were essential to

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

manage the performance of the model while

training using the data and generating relatively

accurate summary text(Abdullahi et al., 2021).

Hyperparameters such as epoch and batch size

are set manually in the experiment. Too small

epoch and batch size is not good for the model

learning capability, certainly cause overfitting.

3.6.2. Analysis of Experiment-3

This is the best experiment that shown best

result during the model training phases. In this

experiment epoch is 30, batch size is 32, and

learning rate is dynamically scheduled starting

from 0.001. It is possible to make further

experiments above epoch 30 or below 20.

However, when you go to high number such as

40 or 50, you face numerous challenges such as

memory, processor, and mainly model

overfitting. There is also the concept of early

stopping, that automatically terminates the

training if there is no change on the

performance metrics. Here, the researcher

observed using more than 30 epochs have not

positive effect on the model training and hence

used maximum epoch value 30.

Table 2

Text of specified style in document.2 Conducted

experiments in Seq2seq using LSTM model

Note. Exp=Experiment, EP= Epoch, BS= Batch-

size, P=Patience, and Emb= Embedding

Figure 2

Text of Specified Style in Document.2 Model

Training in Experiment-3

In these experiments, it is shown that the

hyperparameter tuning and the performance

results found in each experiment of

hyperparameters. And hence, as shown in

Figure 2 experiment 3 has performed better and

taken as the best settings to train the model.

4. Results and Discussion

In this study, the performance results of the

different models are reported using accuracy

and ROUGE scores across different types of

embeddings. During training, accuracy result is

generated in every epoch. But the result to be

compared across the different models is of the

testing data that has reserved as 10 % of the

dataset. The Table 3 and 4 below describe the

accuracy and ROUGE scores achieved by each

model based on the specific embedding

methods used. Notably, some models show

signs of overfitting which can be attributed to

the limited size and domain imbalance of the

Tigrigna dataset, as well as the relatively high

complexity of the LSTM architecture compared

Exp EP BS L-rate P Factor loss Test Emb

1 20 64 0.01 5 0.2 2.196 0.718 100

2 25 32 0.001 5 0.2 2.206 0.714 100
3 30 32 0.001 5 0.2 2.174 0.721 100

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

to the amount of available training data, as

evidenced by differences in performance

measures between the training and validation

periods. To illustrate these insights, the Table 3

compiles accuracy results, while Table 4

provides ROUGE scores for each model and

embedding type. This comparison investigation

sheds light on how embedding choices affect

model performance during Tigrigna

summarization. The combination of different

model architectures and embedding types

yielded varying results. Table 3 below shows the

accuracy results of experimented models with

varying embedding types.

Table 3

Text of Specified Style in Document.3 Accuracy

Results

Accuracy
results

Using fast Text embedding Using BPE
embedding

Simple
fast Text

Stop
words
removal

Down-
sampling

Simple
Seq2seq LSTM

0.713 0.652 0.715 0.6895

Seq2seq with
attention
mechanism

0.709 0.700 0.721 0.695

Transformer 0.009 0.22 0.32 0.45

In the area of NLP tasks like text

summarization, only accuracy is not sufficient to

measure performance. Accuracy cannot capture

relevance, coherence, and fluency of generated

summaries that summarization quality often

depends on. Accuracy generally measures exact

matches, which may not fully represent the

quality of generated text since a summary can

be accurate but still miss key details or be poorly

structured.

For summarization tasks, using metrics like

ROUGE is crucial (Shakil et al., 2024). ROUGE

measures n-gram overlap between generated

and reference summaries. In abstractive

summarization ROUGE value is usual to be very

small size. This is because the new generated

summary is expected to be formulated with

possibly new words. So, generating new words

will decrease the ratio of overlapping n-grams

and subsequences. ROUGE includes variations

like ROUGE-N (for n-grams), ROUGE-L (for

longest common subsequence), and ROUGE-W

(weighted overlap). The model has been

evaluated by using the three types of ROUGE

values, namely ROUGE-N (ROUGE-1 and ROUGE-

2) and ROUGE-L. These metrics provide a more

nuanced view of how well generated summaries

align with human-generated references, beyond

mere correctness.

Table 4 shows the different ROUGE results

for all proposed models with corresponding to

the different embedding types. In this table, the

bold values are higher values by average.

Table 4

Text of Specified Style in Document.4 ROUGE

Results
ROUGE

results

Using fast Text embeddings BPE

embedding Simple fast

Text

Stop words

removal

Down-

sampling

Simple

Seq2seq

LSTM

R1=0.20

R2=0.23

RL=0.108

R1=0.13

R2=0.115

RL=0.09

R1=0.197

R2=0.194

RL=0.17

R1=0.12

R2=0.105

RL=0.109

Seq2seq

with

attention

mechanism

R1=0.2

R2=0.171

RL=0.168

R1=0.16

R2=0.135

RL=0.099

R1=0.205

R2=0.183

RL=0.17

R1=0.16

R2=0.16

RL=0.154

Transformer R1=0.19

R2=0.15

RL=0.14

R1=0.18

R2=0.18

RL=0.175

R1=0.183

R2=0.174

RL=0.08

R1=0.20

R2=0.196

RL=0.18

 Note. R1 = ROUGE-1, R2 = ROUGE-2, RL =

ROUGE-L

Generally, these experiments revealed that

both the choice of model architecture and the

embedding type, along with specific

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

preprocessing steps, had a substantial impact on

performance. The Seq2Seq with Attention

model paired with fast-Text embeddings with

down-sampling mechanism yielded the best

overall performance. The Transformer model

with BPE embeddings also showed encouraging

results, particularly for handling complex or

lengthy input sequences. These findings provide

insight into the factors that influence the

effectiveness of models for Tigrigna text

summarization and emphasize the importance

of appropriate preprocessing strategies for

achieving optimal results.

4.1. Detailed Analysis of the Best Model:

Seq2Seq LSTM with Attention Mechanism

In this work, the seq2seq LSTM model using

attention mechanism is found as the best model

for the abstractive summarization in Tigrigna

language. Hence the research question of this

thesis got positive answer as some deep-

learning models are able to summarize given

Tigrigna texts to a minimum requirement. The

selected model has the ability to handle

Tigrigna’s complex linguistic structures and

limited data organized for abstractive

summarization. The Seq2Seq framework allows

the model to generate new summaries that

conserves the meaning of the input text while

transforming it into new abstract with the same

meaning. The attention mechanism further

enhances this by enabling the model to

selectively focus on the most relevant parts of

lengthy input sequences, improving the

coherence and relevance of generated

summaries.

Moreover, the use of fast-Text embedding

using down-sampling strengthens the Seq2Seq

model by providing sub-word information.

Having sub-word information is crucial in

morphologically rich languages like Tigrigna. It

also helps the model recognize word

morphemes and relationships, even the data is

limited. This combined organization of the

Seq2Seq LSTM with attention and with fast-Text

embeddings creates a model that can handle

Tigrigna’s lengthy input sequences,

morphological complex pattern, and data

scarcity, ultimately achieving better

summarization result and predicting junior

abstractive summaries. Though there are

numerous challenges, this combination provides

a promising foundation for future trends in

Tigrigna abstractive summarization.

As already discussed in Table 4 the

performance of each model has been compared

in their accuracy, loss and ROUGE results.

Though it is not excellent result, seq2seq LSTM

model with attention and fastText embedding is

better over the others.

The overall result of the model’s training and

validation can also be described using line charts

generated using deep-learning packages after

the model execution completed. So, shows the

line charts for both accuracy and loss with

training and validation progresses in 30 epochs

respectively.

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

Figure 3

Text of Specified Style in Document.3-Line Chart

Figure 4

Line Chart of Loss for Seq2seq LSTM Model with

Attention

Although an interactive user interface was

not developed to present the generated

summaries alongside the input texts and

reference (human) summaries, sample outputs

of the model were documented. While the

model shows good results, it also has notable

limitations. One common issue is that the model

occasionally generates repetitive words,

indicating difficulties in maintaining coherence

and diversity within the output. It also produces

overly short summaries, sometimes consisting of

just a single word or, in rare cases, generating

no output at all (null summaries). These issues

show us the model is still struggling with the

task of producing summaries that semantically

close the human summaries, highlighting areas

where further refinement and tuning may be

good to make it better. So, the following sample

outputs in

Figure 5

Taken Directly from Output Generated by

Seq2seq LSTM Model

4.2. Detailed Analysis of Transformer

All the steps done to analyze the seq2seq

LSTM model are also applied to transformer.

However, this model has shown less

performance than seq2seq LSTM model over all

the hyperparameters. Figure 5 shows sample

output of transformer model by taking the raw

text and actual summary.

Figure 6

 A Sample Output from Transformer Model

In this output, actual summary is reference

or human summary prepared manually from the

long input text. Whereas predicted summary is

generated by the model. Besides, the predicted

summaries are showing repetition of words or

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

phrases. This shows the model is struggling to

adapt the language structure and generate

summaries. Hence, Seq2seq model using LSTM

and attention mechanism is preferred over the

transformer model.

5. Conclusion

In today’s information-rich world,

summarizing large volumes of text is crucial for

enabling quick and effective access to relevant

content. For many languages, including Tigrigna,

there is no easy or structured way to condense

vast amounts of online text into reader-friendly

summaries. In response to this need, an

abstractive summarization approach is proposed

to the Tigrigna language using deep learning, a

task made challenging by the language's

complex morphology, limited digital resources,

and the absence of pretrained models or

datasets. To tackle this, two core deep learning

models are trained: a Seq2Seq model with

attention and a Transformer-based model, both

of which are well-suited for abstractive

summarization. The Seq2Seq model enabled

effective sequence learning, capturing word

dependencies in a way that aligns with Tigrigna’s

unique syntactic structures, while the

Transformer model leveraged self-attention

mechanisms for improved contextual

understanding over longer sequences. However,

these models required a high degree of

adaptation to accommodate Tigrigna’s rich

morphology and unique language constructs,

which differ significantly from more commonly

studied languages.

When compared with previous studies,

which were primarily extractive in nature and

relied on statistical or rule-based approaches,

the proposed models demonstrate the potential

of semantic-level summarization in capturing

contextual meaning and generating fluent text.

Although the current results, measured through

accuracy, loss, and ROUGE scores, remain

modest due to limited data, they represent a

significant advancement beyond earlier

extractive approaches that could not generalize

semantic relationships within Tigrigna

sentences. The Seq2Seq model achieved better

performance (accuracy ≈ 0.72, loss ≈ 2.17) than

the Transformer model, highlighting its

suitability for smaller, structured datasets.

This research therefore marks a foundational

contribution to the field of Tigrigna text

summarization. While the output quality

remains at an initial stage, with room for

improvement in fluency and coherence, this

work serves as a pioneering benchmark and a

practical starting point for future research. This

study opens the door to further refinements in

summarization quality, by establishing a

structured approach to abstractive

summarization for Tigrigna, potentially

benefiting Tigrigna-speaking communities and

advancing the broader field of low-resource

language processing. The following are some

future directions to drive this field forward.

1. Development of a standardized Tigrigna

corpus: one of the key challenges faced

was the lack of a standardized,

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

annotated corpus for Tigrigna, which

limited the model’s training potential.

Future research should focus on

creating a well-structured Tigrigna

corpus to support researchers in

evaluating and benchmarking their

systems more effectively.

2. Exploration of advanced deep learning

models: this research employed an

encoder-decoder LSTM-based Seq2Seq

model for summarization. To push

beyond this framework, future studies

could explore more complex deep

learning architectures, such as

Transformer variants, that may capture

longer-range dependencies and

nuanced contextual details more

effectively in Tigrigna.

3. Expanded word embeddings with root

words: the word embeddings used in

this study cover a limited set of Tigrigna

word roots. Building on this work, future

research should focus on expanding

embeddings to encompass a more

comprehensive array of Tigrigna root

words, which would enhance the

model's language representation and

support better generalization.

References

Abdullahi, S. S., Yiming, S., Muhammad, S. H.,

Mustapha, A., Aminu, A. M., Abdullahi, A.,

Bello, M., & Aliyu, S. M. (2021). Deep

Sequence Models for Text Classification

Tasks. 3rd International Conference on

Electrical, Communication and Computer

Engineering, ICECCE 2021, June, 12–13.

https://doi.org/10.1109/ICECCE52056.202

1.9514261

Birhanu G, W. M. (2017). College Of Natural

Science School of Information Science

Automatic Text Summarizer for Tigrinya

Language Automatic Text Summarizer for

Tigrinya Language. 1–96.Birhanu, G. A.

(2017). Automatic text summarizer for

Tigrinya language. 1–86.

Bo, T., Li, W., & Liu, Y. (2025). A Technical

Review of Sequence-to-Sequence Models.

Academic Journal of Natural Science, 2(2).

https://doi.org/10.70393/616a6e73.323834

Carenini, G., Chi, J., & Cheung, K. (2006).

Extractive vs . NLG-based Abstractive

Summarization of Evaluative Text : The

Effect of Corpus Controversiality. INLG ’08:

Proceedings of the Fifth International

Natural Language Generation Conference,

http://aclweb.org/anthology-new/W/W08/W08-

1106.pdf

Egger, R. (2022). Text Representations and Word

Embeddings: Vectorizing Textual Data.

Tourism on the Verge, Part

F1051(February), 335–361.

https://doi.org/10.1007/978-3-030-88389-8_16

Khalil, M. I. (2020). Abstractive Text

Summarization. Journal of Xidian University,

14(6), https://doi.org/10.37896/jxu14.6/094

Paritosh Marathe. (2020). Comprehensive

Survey on Abstractive Text Summarization.

International Journal of Engineering

Research And, V9(09),

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

Gebretekle Y et al. RJSD1(1):2025

https://doi.org/10.82489/rjsd.2025.1.01.29 https://rayajsd.org/index.php/rjsd/

https://doi.org/10.17577/ijertv9is090466

Regassa, M. G., Getachew, M., Advisor, R., &

Assabie, Y. (2017). Topic-based Tigrigna

Text Summarization Using WordNet.

Relan, S., & Rambola, R. (2022). A review on

abstractive text summarization Methods.

2022 13th International Conference on

Computing Communication and

Networking Technologies, ICCCNT.

Doi.org/10.1109/ICCCNT54827.2022.9984332

Sanjabi, N. (2014). Abstractive Text

Summarization with Attention-based

Mechanism.

Sciences, C. (2025). College of Natural and

Computational Sciences School of

Information Science. 6–11.

Shafiq, N., Hamid, I., Asif, M., Nawaz, Q., Aljuaid,

H., & Ali, H. (2023). Abstractive text

summarization of low- resourced

languages using deep learning. PeerJ

Computer Science, 9.

https://doi.org/10.7717/peerj-cs.1176

Shakil, H., Farooq, A., & Kalita, J. (2024).

Abstractive text summarization: State of

the art, challenges, and improvements.

Neurocomputing, 603.

https://doi.org/10.1016/j.neucom.2024.128255

Tamiru, M., & Libsie, M. (2009). Automatic

Amharic Text Summarization Using Latent

Semantic Analysis. 1–106, Angeles, L.,

Advocacy, S., Location, O. (2002).

tigrinya · GitHub Topics · GitHub. (n.d.).

Retrieved October 15, 2025, from

https://github.com/topics/tigrinya

Wazery, Y. M., Saleh, M. E., Alharbi, A., & Ali, A.

A. (2022). Abstractive Arabic Text

Summarization Based on Deep Learning.

Computational Intelligence and

Neuroscience,2022.

Doi.org/10.1155/2022/1566890

Yirdaw, E. D. (2011). Topic-based Amharic Text

Summarization. June, Angeles, L.,

Advocacy, S., Location, O. (2002).

Yirdaw, E. D., & Ejigu, D. (2012). Topic-based

amharic text summarization with

probabilisic latent semantic analysis.

Proceedings of the International

Conference on Management of Emergent

Digital EcoSystems, MEDES 2012, 8–15.

https://doi.org/10.1145/2457276.2457279

https://doi.org/10.82489/rjsd.2025.1.01.29
https://rayajsd.org/index.php/rjsd/

