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Abstract

Text summarization is becoming an essential research area due to rapid growth of
online text data. It involves condensing long sequences of text into short, concise,
and expressive summaries. There are two main approaches: extractive and
abstractive. Extractive approach focuses on selecting portions of text without
addressing underlying meaning. While abstractive approach rephrases or
reorganizes long text to produce semantically equivalent summaries, possibly with
new words or phrases. In the case of Tigrigna, most existing studies have relied on
extractive techniques, leaving abstractive methods largely unexplored. There is no
structured dataset, no pre-trained word embedding, and no pertained
summarization model in Tigrigna. These fundamental problems have been
dffecting the motive to apply abstractive approach in Tigrigna. This study
addresses this gap by developing an abstractive text summarization model for the
Tigrigna language using deep learning techniques. A dataset of 1,167 structured
input paragraphs and reference summaries was prepared for training and
evaluation. Different embedding methods, including fastText and Byte Pair
Encoding, were trained on about 320 MB of data. In this study, two models
(Sequence-to-sequence Long Short-Term Memory and Transformer) were
evaluated. The Sequence-to-sequence works sequentially, whereas the
Transformer operates in parallel. An attention mechanism was added to
Sequence-to-sequence, while Transformer uses self-attention. Among tested
model-embedding matches, Sequence-to-sequence with attention and fastText
with down-sampling showed superior performance, achieving accuracy of 0.72
and Recall-Oriented Understudy for Gisting Evaluation scores of R-1=0.20, R-
2=0.183, and R-N=0.17. This work pioneers Tigrigna abstractive summarization,
marking a foundational step for future research. Future studies could concentrate
on growing the dataset, investigating bidirectional and hybrid deep learning
architectures.

Keywords: abstractive, attention mechanism, fast text embedding, LSTM,
Seq2Seq
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1. Introduction

Natural Language Processing (NLP) has been
transforming how machines interpret and
process written text (Regulation, 2024). Text
summarization has emerged as an essential NLP
task for generating concise and meaningful
summaries with the exponential growth of
online content. Among the many languages
processed by NLP systems, Tigrigna, a
morphologically rich language spoken by around
9.9 million people in the Horn of Africa, faces
significant challenges due to the scarcity of
annotated datasets,

resources such as

pretrained embeddings, and summarization
models (Birhanu, Guesh Amiha, 2017). This lack
of tools has slowed research progress and
limited information accessibility for Tigrigna
speakers.

summarization can be

Text broadly

categorized into extractive and abstractive
approaches (Shakil et al.,, 2024). Extractive
summarization selects key portions of the
original text, while abstractive summarization
generates new sentences that capture the
overall meaning(Relan & Rambola, 2022). For
Tigrigna, existing studies have focused mainly on
extractive methods, which often fail to preserve

coherence and semantic richness(Carenini et al.,

2006).
This study, therefore, explores the
application of modern abstractive text

summarization techniques to Tigrigna. It focuses

on methods based on the Sequence-to-

Sequence (Seq2Seq) framework using the

encoder-decoder model (Bo et al., 2025; Wazery
2022). the encoder

hidden

et al, In this model,

transforms input text into
representations, while the decoder generates a
new sequence of tokens as output. The main
objective of this research is to apply and adapt
NLP frameworks to develop an abstractive
summarization system for Tigrigna. The study
involves preparing datasets and embeddings,
building deep learning models such as Seq2Seq
with attention and Transformer architectures,
and evaluating their performance.
2. Literature Review

Text summarization is an active study topic
in today's world. As a result, there are numerous
studies underway in this area. To that purpose,
the researcher presents works from the
beginning to the present, demonstrating how
different researchers conducted their research
and what they learned. Based on the output
they generate; text summarization approaches

are either extractive or abstractive(Carenini et

al., 2006).
Some studies to Tigrigna extractive
summarization of single documents are

researched(Birhanu, Guesh Amiha, 2017,
Birhanu, 2017; Regassa et al., 2017). These
researches focused on identifying key textual
elements. For example, proposed a topic-based
Tigrigna text summarization method that
integrates wordnet and Probabilistic Latent
Semantic Analysis (PLSA). This research was
evaluated using a dataset of 200 Tigrigna news

articles from various domains. The performance
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was assessed with precision and recall metrics at
a 25% extraction rate, yielding a precision/recall
score of 0.5014.

A review has also done on many papers
using abstractive approach. Though there is not
any abstractive based paper published for
Tigrigna language, the researcher reviewed
some related languages like Amharic, English,
Urdu and Arabic(Khalil, 2020; Shafiq et al., 2023;
Tamiru & Libsie, 2009; Yirdaw, 2011; Yirdaw &
Ejigu, 2012). These papers have applied deep
learning to train their models. Deep learning is a
trending field due to its essential applications in
the research area(Abdullahi et al., 2021). There
are various models that suits, the abstractive
text summarization(Paritosh Marathe, 2020).
There are even pre-trained or predefined
models to the popular languages like English.
However, for the Ethiopian languages, it is not
exercised well. Particularly in Tigrigna, there is
no pre-trained deep learning model.

3. Research Methodology

The setting of the methodology for the
abstractive Tigrigna text summarization includes
data  collection and  structuring, data
preprocessing, word embedding, padding, and

model implementation and training.

Table 1

Summary of Related Works in Tabular Form

Title Language  Author and Method

Year
Topic-Based Tigrigna Regassa & Wordnet and PLSA
Text Getachew,
Summary 2017;
Automatic Tigrigna Birhanu, Term frequency
Text 2017 and title words
Summarizer methods
Text Tigrigna Hiluf Restricted
Summarizati Gebrehiwo Boltzmann
on Using tand Machines (RBM)
Deep Melese,
Learning 2023
Abstractive Ambharic Khalil, Seq2Seq with Long
Text 2020 Short-Term
Summarizati Memory (LSTM)
on Model and attention
Deep English Suleiman &  RNN with attention
Learning- Awajan, and LSTM
Based 2020
Abstractive
Summarizati
on
Deep Urdu Shafiq et Seq2Seq model
Learning for al., 2023 with deep learning
Abstractive compared to SVM
Summarizati and LR
on
Text English Sutskever Seq2Seq with
Summarizati etal., 2014 attentional
on with encoder-decoder
Seq2Seq and RNN
Attention
Mechanism

3.1 Dataset Structuring

Data collection and structuring tasks were
the most challenging steps due to the scarcity of
prepared resources in Tigrigna language. The
data is taken from Dimtsi Weyane television,
Tigrai television, and Github website(Tigrinya -
GitHub Topics - GitHub, n.d.), as raw data. These
environments were chosen in two reasons for
data collection. Firstly, it is easy to collect the
desired data. The second and mandatory criteria
was the nature of their data. This means most of
the data are news texts. Usually, news is
prepared by journalists, having the main news
(title) so that the title is used as the reference

summary. Therefore, 1,167 pairs of input texts
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(paragraphs) and reference summaries are
structured by using the title part as the
reference summary to help the model learn
summarization in Tigrigna.

While working in abstractive summarization
using deep-learning, it is essential to structure
and organize the data before preprocessing
(Abdullahi et al., 2021). In this case, the model
needs pair of input text and reference summary,
as input for the encoder-decoder LSTM network.
And hence these pair of inputs are prepared in
notepad editor by adding special delimiters
‘===text==="(user defined delimiter for the
Text) to the input text and ‘===summary==='
(user defined delimiter for the Summary) to the
reference summary. These delimiters are used
to identify the pair of inputs while loading the
dataset file, and those delimiters are custom
markers that defined to separate and identify
segments of data when preparing input files
manually for preprocessing scripts. The
following Tigrigna texts show how the given
Tigrigna text is structured before preprocessing.

Raw text example:

ACANT G
AN T2 PPOGFhédch K70t WPEAT OF@- ag s
HEAC A% 0L

HCHC BS
POFhdch  Aanterrt PEAT 0% 0dch AN

PPEAMCTE K00 Y70+ aPOch(l RSHIPT 6L hD-7
A PNCTT A ANCHE NPHAPT (LC VAT
BEHIPT 962 W6 Al HHIN0 AN, 2007007
AC Ok, A0 hrto? aoPA HH710 BN hehe (KK)
A+l P hPT W

The following text shows input pairs of the

above news after structuring:

===text=== PPOFchdh ATANTOTE PEAT 0LA
Oéch AN P&NCTE 8900 Y701+7 ao(chl RSHIPY
1962 A7 KAl P07 AC-A ANCHF hIPHAPI (L.C
AOWAT EGHIT 968 6 AR HF100 NAOA

20071487 NC @A, A0 htol aoPA U710 PEA
hehe (KK) A0HtaodPn APt Al
===summary=== Al T2 I°0&chdch
A0 AT POTO- 023 HEPC AR 0
3.2. Data Preprocessing

Data preprocessing involves preparing raw
text data to enhance the performance of
summarization models. This task includes text

contraction character

cleaning, mapping,
normalization, and tokenization. Text cleaning
also involves removing non-Tigrigna characters,
punctuations, special characters, stop words
(like hA® h9°) and extra whitespaces. Contraction
mapping and character normalization is also
done on the Tigrigna contraction words and
some characters that have same sound and
purpose. In this case, a separate JSON file is
prepared as input for the preprocessing. This file
includes Tigrigna characters mapping (e.g., 4=0%
w=() and Tigrigna words abbreviation mapping
(e.g., H/e=HTdANRT (O/T/t=0T  TIPUCE).
Tokenizing the text into words or sentences, and
normalizing words through lemmatization or
stemming. This file is prepared manually from
Tigrai tourism and culture bureau. It has 92
abbreviations and short form mappings, and 28-
character mappings.

Additionally, tokenization is also done to the
cleaned data. This activity reads a sequence of

characters as a string and tokenizes them using

a predefined list of delimiters such as space and
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punctuation marks and then represents each
token in array of numbers. In this study, input
texts are tokenized into a sentence using the

"\
H

punctuation and each sentence are spliced
in to entire or nested list which helps to convert
into list of words.
3.3.Data Splitting

Data splitting is one of the mandatory steps
in preparing data to train deep learning models.
It is the process of intentional dividing the
organized data in to different subsets to be used
in different stages of the model’s lifecycle such
as training, validation, and testing.
In this work, data is split using a ratio of 80% for
training, 10 % for validation, and 10% for testing
subsets. This ratio of the subsets is selected by
its convenience to the model and data size after
conducting 3 experiments with common data
splitting ratios in abstractive text
summarizations. The dataset is limited and was
partitioned with 10% reserved for testing.
Without allocating a portion of the data for
validation and testing, the model would be
susceptible to overfitting, compromising its
generalization performance. There are different
techniques to split the data in to different
subsets. The commonly exercised techniques
are random and stratified. Random method is
used for splitting as the data is uniformly
distributed.
3.4.Word Embedding

Word embeddings help models understand

the meaning of words in context(Egger, 2022).

For Tigrigna, a language with rich morphology

and syntactic structures, embeddings need to
capture not only word meanings but also
relationships between different word forms.
Tigrigna, like many other languages, has words
that change form based on tense, number, and
gender. Specialized embeddings can capture
these variations, allowing the model to
generalize better and produce more accurate
summaries.

There are two types of word embedding
techniques: traditional methods and contextual
methods(Egger, 2022). In the traditional types of
embedding techniques, the vector form does
not capture the semantic relationship as words
are embedded

independently. Examples of

traditional word embedding include Term
Frequency-Inverse Document Frequency (TF-
IDF), count vector, GLOVE, Word2Vec etc
(Abdullahi et al., 2021). On the other way, the
common algorithms used for training word
embeddings having semantic information are
fastText, Elmo, Generative Pre-trained
Transformer (GPT) and GPT-2, Byte Pairing
Encoding (BPE) and Bidirectional Encoder
Representations from Transformers (BERT). In
this study, experiments for word embedding
were made using fastText and BPE word
embedding methods for their convenience to
rich morphology languages(Egger, 2022). Due to
the absence of publicly available pre-trained
Tigrigna word embeddings, custom models were
developed for this research. A custom Tigrigna
word embeddings were prepared using those

approaches and trained them on a large dataset

https://doi.orq/10.82489/rjsd.2025.1.01.29
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spanning multiple fields like agriculture,

education, sports, and politics. As a

consequence of the experiment, the fastText
using down sampling method has performed
better and used to generate custom embedding
of the data set. The resulting word vectors are

maintained locally, providing an important

linguistic resource for the research goal,

developing an abstractive summarization model
for Tigrigna text.

In this technique, every single occurrence of
a word is represented by embedding dimension.
Embedding dimension defines the length of the
vector representation for each word. Higher
value reflects higher information but requires
high memory space. The common values are 50,
100, 200, and 300. When the data is large size,
using large dimension (e.g. 300) is preferred.
However, when data is small, it is recommended
to set average dimension (e.g. 50 or 100) to
utilize memory space(Egger, 2022). In this work,
the embedding dimension is set to 100 as you
can see in the output example below.

Example: the word “FPUCt’ is represented as

follows.

‘+oeuct  0.1925859 -0.29207048 -0.08439901 0.039799646
0.3641676 0.073608406 -0.7650273 0.04147037 0.2879626 -
0.36144435 -0.39172873 0.5143982 -0.752826 0.08606512 -
0.93490994 -0.13160115 -0.41230726 0.7842884 0.5688561
0.10861172 -0.26581797 -0.23717366 0.25146484 -0.7285605 -
0.9428908 -0.015943918 1.1289601 -0.7270743 -0.53325266
0.045723584 -0.4794562 0.94648546 -0.5338172 -1.165367
0.2542716 -0.52565515 -0.3413985 -0.03239215 -0.5524072 -
0.10506536 0.062022235 0.8638829 -1.0330185 0.7314383
0.51415807 0.33765644 -0.17070593 0.032447204 -0.2572221 -
0.0751654 -0.5847026 -0.6834384 -0.4850279 0.09068502 -
0.6141403 0.45645028 0.16440077 -0.47739515 0.35700983 -
0.47724828 -0.08733774 0.29962227 0.38471565 -0.038393848 -
0.88605523 0.17655876 0.027320378 0.756702 -0.35022673
0.42926 -0.118354924 0.35008702 0.5892428 -0.27457365 -
0.8334408 -0.023459285 -0.1667422 0.92475754 0.04237065
0.13801275 0.6401937 -0.22754209 0.18134119 -0.3616498
0.69549537 0.86129206 0.039201967 -0.06344785 0.1806198
0.5076103 0.6642553 -0.49786687 0.44641012 0.24511304 -

0.09361779 -0.9122355 -0.1879493 0.01642124 -0.852965 -
0.07018303

3.5. Proposed Deep Learning Models

Deep learning can automatically learn

complex linguistic patterns. Hence, it has

emerged as a dominant paradigm in NLP

(Abdullahi et al.,, 2021). The researcher

developed and trained two deep learning
models for the current study, which focus on
abstractive text summarization in Tigrigna:
Transformer model and Seq2Seq model with
LSTM and attention mechanism. These models
were chosen following an analysis of a number
of advanced architectures and their applicability
to low-resource, morphologically rich languages
such as Tigrigna. Since no pre-trained
summarization models exist for Tigrigna, all
models were implemented and trained from
scratch to enable fair performance comparison
of the proposed approaches.
3.5.1. Seq2Seq Model with LSTM and
Attention Mechanism

The first proposed model is a Seq2Seq
architecture  composed of two core
components: an encoder and a decoder, both
implemented with LSTM networks.
Encoder: the encoder LSTM takes the input text
sequence (Tigrigna sentences) and encodes it
into a fixed-length context vector representing
the semantic meaning of the entire sentence.
Decoder: the decoder LSTM receives both the
context vector and the attention weights to
generate the target summary word by word.
Attention layer: instead of relying solely on the

final encoder state, the model integrates an

https://doi.orq/10.82489/rjsd.2025.1.01.29
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attention mechanism that allows the decoder to
selectively focus on different parts of the input
sequence during the generation process. This is
crucial for Tigrigna, which often uses long and
morphologically complex words.

This architecture helps the model overcome
the limitations of basic Seq2Seq models that
struggle with long-range dependencies. In
training phase, the model was optimized using
categorical cross-entropy loss and the Adam
optimizer, with early stopping applied to
prevent overfitting.

In Figure 1, the detail architecture of the
seq2seq LSTM model with attention mechanism
is presented. It shows how the model processes
the given sequence of text and generates
abstract using the deep learning algorithms. The
LSTM networks are selected in their advantages
like handling long term dependencies, memory
cell and forgetting mechanism, and generally
suitability for sequential data, over the other
traditional recurrent neural networks.

Figure 1
Text of Specified Style in Document.l1
Architecture of Seq2seq LSTM Model with

Attention Layer

] =]

3.5.2. Transformer Model

The second proposed model is a

Transformer-based architecture, which relies

entirely on self-attention instead of recurrent

layers (Bo et al., 2025). The Transformer consists
of stacked encoder and decoder layers. Each
encoder layer includes multi-head self-attention
and feed-forward sublayers, while the decoder
includes masked self-attention, encoder—
decoder attention, and feed-forward networks.
Transformer also have self-attention
mechanism. This mechanism allows the model
to consider all positions of the input sequence
simultaneously, capturing long-range
dependencies efficiently. This parallelism also
makes the model faster to train compared to
LSTM-based architectures. Since Transformers
lack recurrence, positional encoding was added
to the input embeddings to provide information
about word order.

The same preprocessing pipeline was used
during training, as the Seq2Seq model was
applied. The Transformer demonstrated
stronger ability to capture contextual meaning
across longer sentences but required larger
computational resources.

3.6. Experiments and Hyperparameters

Tunning
3.6.1. Hyperparameter Tunning

The seq2seq LSTM model with attention
mechanism and fastText embedding is trained
under the following settings. Selecting the right
to enhance the

hyperparameters is crucial

model’s performance. The basic
hyperparameters used in the model training are
epoch size, batch size, learning rate, dropout
rate, early stopping, optimizer and embedding

dimension. These parameters were essential to

https://doi.orq/10.82489/rjsd.2025.1.01.29
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manage the performance of the model while
training using the data and generating relatively
accurate summary text(Abdullahi et al., 2021).
Hyperparameters such as epoch and batch size
are set manually in the experiment. Too small
epoch and batch size is not good for the model
learning capability, certainly cause overfitting.
3.6.2. Analysis of Experiment-3

This is the best experiment that shown best
result during the model training phases. In this
experiment epoch is 30, batch size is 32, and
learning rate is dynamically scheduled starting
from 0.001. It is possible to make further
experiments above epoch 30 or below 20.
However, when you go to high number such as
40 or 50, you face numerous challenges such as
memory, processor, and mainly model
overfitting. There is also the concept of early
stopping, that automatically terminates the
if there is no the

training change on

performance metrics. Here, the researcher
observed using more than 30 epochs have not
positive effect on the model training and hence
used maximum epoch value 30.

Table 2

Text of specified style in document.2 Conducted

experiments in Seq2seq using LSTM model

Exp EP BS L-rate P Factor loss Test Emb
1 20 64 0.01 5 02 2.196 0.718 100
2 25 32 0001 5 02 2.206 0.714 100
3 30 32 0001 5 02 2.174 0.721 100

Note. Exp=Experiment, EP= Epoch, BS= Batch-

size, P=Patience, and Emb= Embedding

Figure 2
Text of Specified Style in Document.2 Model

Training in Experiment-3

In these experiments, it is shown that the
hyperparameter tuning and the performance
each experiment of

results found in

hyperparameters. And hence, as shown in
Figure 2 experiment 3 has performed better and
taken as the best settings to train the model.
4. Results and Discussion

In this study, the performance results of the
different models are reported using accuracy
and ROUGE scores across different types of
embeddings. During training, accuracy result is
generated in every epoch. But the result to be
compared across the different models is of the
testing data that has reserved as 10 % of the
dataset. The Table 3 and 4 below describe the
accuracy and ROUGE scores achieved by each
model based on the specific embedding
methods used. Notably, some models show
signs of overfitting which can be attributed to
the limited size and domain imbalance of the
Tigrigna dataset, as well as the relatively high

complexity of the LSTM architecture compared
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to the amount of available training data, as
evidenced by differences in performance
measures between the training and validation
periods. To illustrate these insights, the Table 3
compiles accuracy results, while Table 4
provides ROUGE scores for each model and
embedding type. This comparison investigation
sheds light on how embedding choices affect
model performance during Tigrigna
summarization. The combination of different

model architectures and embedding

types
yielded varying results. Table 3 below shows the
accuracy results of experimented models with
varying embedding types.

Table 3

Text of Specified Style in Document.3 Accuracy

Results
Accuracy Using fast Text embedding Using BPE
results embedding
Simple Stop Down-
fast Text words sampling
removal
Simple 0.713 0.652 0.715 0.6895
Seq2seq LSTM
Seq2seq with 0.709 0.700 0.721 0.695
attention
mechanism
Transformer 0.009 0.22 0.32 0.45
In the area of NLP tasks like text

summarization, only accuracy is not sufficient to
measure performance. Accuracy cannot capture
relevance, coherence, and fluency of generated
summaries that summarization quality often
depends on. Accuracy generally measures exact
matches, which may not fully represent the
quality of generated text since a summary can
be accurate but still miss key details or be poorly
structured.

For summarization tasks, using metrics like
ROUGE is crucial (Shakil et al.,, 2024). ROUGE

measures n-gram overlap between generated

and reference summaries. In abstractive
summarization ROUGE value is usual to be very
small size. This is because the new generated
summary is expected to be formulated with
possibly new words. So, generating new words
will decrease the ratio of overlapping n-grams
and subsequences. ROUGE includes variations
like ROUGE-N (for n-grams), ROUGE-L (for
longest common subsequence), and ROUGE-W
(weighted overlap). The model has been
evaluated by using the three types of ROUGE
values, namely ROUGE-N (ROUGE-1 and ROUGE-
2) and ROUGE-L. These metrics provide a more
nuanced view of how well generated summaries
align with human-generated references, beyond
mere correctness.

Table 4 shows the different ROUGE results
for all proposed models with corresponding to
the different embedding types. In this table, the
bold values are higher values by average.
Table 4

Text of Specified Style in Document.4 ROUGE

Results

ROUGE Using fast Text embeddings BPE

results Simple fast  Stop words  Down- embedding
Text removal sampling

Simple R1=0.20 R1=0.13 R1=0.197 R1=0.12

Seq2seq R2=0.23 R2=0.115 R2=0.194 R2=0.105

LSTM RL=0.108 RL=0.09 RL=0.17 RL=0.109

Seq2seq R1=0.2 R1=0.16 R1=0.205 R1=0.16

with R2=0.171 R2=0.135 R2=0.183 R2=0.16

attention RL=0.168 RL=0.099 RL=0.17 RL=0.154

mechanism

Transformer R1=0.19 R1=0.18 R1=0.183 R1=0.20
R2=0.15 R2=0.18 R2=0.174 R2=0.196
RL=0.14 RL=0.175 RL=0.08 RL=0.18

Note. R1 = ROUGE-1, R2 = ROUGE-2, RL =
ROUGE-L

Generally, these experiments revealed that
both the choice of model architecture and the
along  with  specific

embedding  type,
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preprocessing steps, had a substantial impact on
performance. The Seq2Seq with Attention
model paired with fast-Text embeddings with
down-sampling mechanism vyielded the best
overall performance. The Transformer model
with BPE embeddings also showed encouraging
results, particularly for handling complex or
lengthy input sequences. These findings provide
insight into the factors that influence the
effectiveness of models for Tigrigna text
summarization and emphasize the importance
of appropriate preprocessing strategies for
achieving optimal results.
4.1.Detailed Analysis of the Best Model:
Seq2Seq LSTM with Attention Mechanism
In this work, the seq2seq LSTM model using
attention mechanism is found as the best model
for the abstractive summarization in Tigrigna
language. Hence the research question of this
thesis got positive answer as some deep-
learning models are able to summarize given
Tigrigna texts to a minimum requirement. The
selected model has the ability to handle
linguistic structures and

Tigrigna’s complex

limited data organized for abstractive
summarization. The Seq2Seq framework allows
the model to generate new summaries that
conserves the meaning of the input text while
transforming it into new abstract with the same
meaning. The attention mechanism further
enhances this by enabling the model to
selectively focus on the most relevant parts of
lengthy input

sequences, improving the

coherence and relevance of generated
summaries.

Moreover, the use of fast-Text embedding
using down-sampling strengthens the Seq2Seq
information.

model by providing sub-word

Having sub-word information is crucial in
morphologically rich languages like Tigrigna. It
also helps the model recognize word
morphemes and relationships, even the data is
limited. This combined organization of the
Seg2Seq LSTM with attention and with fast-Text

embeddings creates a model that can handle

Tigrigna’s lengthy input sequences,
morphological complex pattern, and data
scarcity, ultimately achieving better

summarization result and predicting junior

abstractive summaries. Though there are
numerous challenges, this combination provides
a promising foundation for future trends in
Tigrigna abstractive summarization.

As already discussed in Table 4 the
performance of each model has been compared
in their accuracy, loss and ROUGE results.
Though it is not excellent result, seq2seq LSTM
model with attention and fastText embedding is
better over the others.

The overall result of the model’s training and
validation can also be described using line charts
generated using deep-learning packages after
the model execution completed. So, shows the
line charts for both accuracy and loss with
training and validation progresses in 30 epochs

respectively.
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Although an interactive user interface was
not developed to present the generated
summaries alongside the input texts and
reference (human) summaries, sample outputs
of the model were documented. While the
model shows good results, it also has notable
limitations. One common issue is that the model
occasionally  generates repetitive  words,
indicating difficulties in maintaining coherence
and diversity within the output. It also produces
overly short summaries, sometimes consisting of
just a single word or, in rare cases, generating
no output at all (null summaries). These issues
show us the model is still struggling with the
task of producing summaries that semantically
close the human summaries, highlighting areas

where further refinement and tuning may be

good to make it better. So, the following sample
outputsin

Figure 5

Taken Directly from Output Generated by
Seq2seq LSTM Model

4.2.Detailed Analysis of Transformer

All the steps done to analyze the seq2seq
LSTM model are also applied to transformer.
However, this model has shown less
performance than seq2seq LSTM model over all
the hyperparameters. Figure 5 shows sample
output of transformer model by taking the raw
text and actual summary.
Figure 6

A Sample Output from Transformer Model

In this output, actual summary is reference
or human summary prepared manually from the
long input text. Whereas predicted summary is
generated by the model. Besides, the predicted

summaries are showing repetition of words or
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phrases. This shows the model is struggling to
adapt the language structure and generate
summaries. Hence, Seq2seq model using LSTM
and attention mechanism is preferred over the
transformer model.
5. Conclusion

In today’s information-rich world,
summarizing large volumes of text is crucial for
enabling quick and effective access to relevant
content. For many languages, including Tigrigna,
there is no easy or structured way to condense
vast amounts of online text into reader-friendly
summaries. In response to this need, an
abstractive summarization approach is proposed
to the Tigrigna language using deep learning, a
task made challenging by the language's
complex morphology, limited digital resources,
and the absence of pretrained models or
datasets. To tackle this, two core deep learning
models are trained: a Seq2Seq model with
attention and a Transformer-based model, both
of which are well-suited for abstractive
summarization. The Seq2Seq model enabled
effective sequence learning, capturing word

dependencies in a way that aligns with Tigrigna’s

unique  syntactic  structures, while the
Transformer model leveraged self-attention
mechanisms for improved contextual

understanding over longer sequences. However,
these models required a high degree of
adaptation to accommodate Tigrigna’s rich
morphology and unique language constructs,
which differ significantly from more commonly

studied languages.

When compared with previous studies,
which were primarily extractive in nature and
relied on statistical or rule-based approaches,
the proposed models demonstrate the potential
of semantic-level summarization in capturing
contextual meaning and generating fluent text.
Although the current results, measured through
accuracy, loss, and ROUGE scores, remain
modest due to limited data, they represent a
significant  advancement beyond earlier
extractive approaches that could not generalize
semantic relationships within Tigrigna
sentences. The Seq2Seq model achieved better
performance (accuracy = 0.72, loss = 2.17) than
the Transformer model, highlighting its
suitability for smaller, structured datasets.

This research therefore marks a foundational
contribution to the field of Tigrigna text
summarization. While the output quality
remains at an initial stage, with room for
improvement in fluency and coherence, this
work serves as a pioneering benchmark and a
practical starting point for future research. This
study opens the door to further refinements in
summarization

quality, by establishing a

structured approach to abstractive

summarization  for  Tigrigna,  potentially
benefiting Tigrigna-speaking communities and
advancing the broader field of low-resource
language processing. The following are some
future directions to drive this field forward.
1. Development of a standardized Tigrigna
corpus: one of the key challenges faced
lack of a standardized,

was the
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annotated corpus for Tigrigna, which
limited the model’s training potential.
should focus on

Future research

creating a well-structured Tigrigna

corpus to support researchers in

evaluating and benchmarking their
systems more effectively.
2. Exploration of advanced deep learning
models: this research employed an
encoder-decoder LSTM-based Seq2Seq
model for summarization. To push
beyond this framework, future studies
could explore more complex deep
learning architectures, such as
Transformer variants, that may capture
and

longer-range dependencies

nuanced contextual details more
effectively in Tigrigna.

3. Expanded word embeddings with root
words: the word embeddings used in
this study cover a limited set of Tigrigna
word roots. Building on this work, future
research should focus on expanding
embeddings to encompass a more

comprehensive array of Tigrigna root

words, which would enhance the

model's language representation and
support better generalization.
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